Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli
نویسندگان
چکیده
One of the paramount goals of synthetic biology is to have the ability to tune transcriptional networks to targeted levels of expression at will. As a step in that direction, we have constructed a set of 18 unique binding sites for E. coli RNA Polymerase (RNAP) δ⁷⁰ holoenzyme, designed using a model of sequence-dependent binding energy combined with a thermodynamic model of transcription to produce a targeted level of gene expression. This promoter set allows us to determine the correspondence between the absolute numbers of mRNA molecules or protein products and the predicted promoter binding energies measured in k(B)T energy units. These binding sites adhere on average to the predicted level of gene expression over 3 orders of magnitude in constitutive gene expression, to within a factor of 3 in both protein and mRNA copy number. With these promoters in hand, we then place them under the regulatory control of a bacterial repressor and show that again there is a strict correspondence between the measured and predicted levels of expression, demonstrating the transferability of the promoters to an alternate regulatory context. In particular, our thermodynamic model predicts the expression from our promoters under a range of repressor concentrations between several per cell up to over 100 per cell. After correcting the predicted polymerase binding strength using the data from the unregulated promoter, the thermodynamic model accurately predicts the expression for the simple repression strains to within 30%. Demonstration of modular promoter design, where parts of the circuit (such as RNAP/TF binding strength and transcription factor copy number) can be independently chosen from a stock list and combined to give a predictable result, has important implications as an engineering tool for use in synthetic biology.
منابع مشابه
Binding affinity of Escherichia coli RNA polymerase*sigma54 holoenzyme for the glnAp2, nifH and nifL promoters.
Escherichia coli RNA polymerase associated with the sigma54 factor (RNAP*sigma54) is a holoenzyme form that transcribes a special class of promoters not recognized by the standard RNA polymerase*sigma70 com plex. Promoters for RNAP*sigma54 vary in their overall 'strength' and show differences in their response to the presence of DNA curvature between enhancer and promoter. In order to examine w...
متن کاملTranscription of polyoma DNA by Escherichia coli RNA polymerase: influence of ionic strength on promoter selection.
The influence of ionic strength on transcription of polyoma DNA by Escherichia coli RNA polymerase was investigated. At 0.15 M KCl, transcription was highly symmetrical and, due to the lack of reinitiation, a limited extent of RNA synthesis was observed. When the concentration of KCl was raised to 0.45 M, the affinity of the enzyme for its template, as well as its apparent affinity for ribonucl...
متن کاملOn the promoter complex formation rate of E. coli RNA polymerases with T7 phage DNA.
Influence of ionic strength on the kinetics of the promoter complex formation between E. coli RNA polymerase and T7 phage DNA was investigated using a membrane filter assay. The enzyme-promoter association rate constant was determined. It varies from 10(9) to 3 x 10(7) M-1 sec-1 when the ionic strength is changed from zero to 0.15 M NaCl. Basing on the theoretical analysis of experimental data ...
متن کاملThe magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.
The global regulatory nucleotide ppGpp ("magic spot") regulates transcription from a large subset of Escherichia coli promoters, illustrating how small molecules can control gene expression promoter-specifically by interacting with RNA polymerase (RNAP) without binding to DNA. However, ppGpp's target site on RNAP, and therefore its mechanism of action, has remained unclear. We report here a bin...
متن کاملNucleotide sequence of an RNA polymerase binding site at an early T7 promoter.
Escherichia coli RNA polymerase (EC 2.7.7.6), bound in a tight complex at an early T7 promoter, protects 41 to 43 base pairs of DNA from digestion by DNase. I. The protected DNA fragment contains both the binding site for RNA polymerase and the mRNA initiation point for the promoter. The sequence of the DNA fragment and the sequence of the mRNA that it codes for are presented here. A seven-base...
متن کامل